各地招聘

当前位置:乡镇公务员 > 备考指导 > 行测 >

2019乡镇公务员考试内容-行测技巧:行测排列组合题常用技巧总结

来源:中公乡镇公务员考试网     2019-09-06 09:55:47

编辑推荐乡镇学习交流群:779500312

编辑推荐乡镇公务员微信公众号:offcnxz

编辑推荐全国乡镇公务员考试课程


【导语】2019年乡镇公务员考试已经陆续开始,很多学员对于乡镇公务员考试内容-行测的备考无从下手,中公乡镇公务员考试网特意为大家提供行测考试内容备考之行测技巧备考知识,请广大考生关注乡镇公务员考试网,及时查看乡镇公务员备考资料,包括备考指导考试题库等信息。中公乡镇公务员考试网致力于为您提供更优质的信息。

排列组合是行测考试中的常见题型,基本上属于必考题型。中公教育专家在此将排列组合中的常用方法进行总结,希望对各位考生有所帮助,包括四个常用方法的含义及相应的例题解析。

一、优限法

(一)含义

对于有限制条件的元素(或位置),在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。

(二)例题解析

例:甲、乙、丙、丁、戊五个人排成一列,其中甲不站在头或尾的位置,共有多少种不同的排列方法?

【中公解析】甲是这5个人里面有限制条件的元素,所以就优先考虑甲。让他站在除头尾以外的中间的3个位置,有3种选择;然后仔安排除甲以外的另外4个人,有A4 4=24种方法。所以最终共有3×24=72种方法。

二、捆绑法

(一)含义

在解决对于某几个元素要求相邻的问题时,先相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。

(二)例题解析

例:甲、乙、丙、丁、戊五个人排成一列,其中甲乙必须相邻,共有多少种不同的排列方法?

【中公解析】甲乙要求相邻,将甲乙捆绑变为一个大元素进行排序,这五个人变为4个元素,全排列共有A4 4=24种方法,甲乙内部两个人可以更换位置,共A2 2=2种方法。所以总共2×24=48种方法。

例:图书管理员要整理书籍,现在有3本教育类书籍,4本艺术类书籍,5本化学类书籍。把他们整理在同一层书架,且同类的书籍必须摆在一起,共有多少种不同的方法?

【中公解析】同类书籍必须摆在一起,属于元素相邻的问题,所以使用捆绑法。把这些有相邻要求的元素捆绑为3个大元素排列,然后再考虑各个大元素内部元素的排序,共有A3 3A3 3A4 4A5 5=103680种方法。

(责任编辑:cy47389)

免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除

———— 课程专区 ————

  • 乡镇公务员微信公众号

    微信公众号

  • 中公乡镇公务员考试网

    手机端浏览