各地招聘

当前位置:乡镇公务员 > 备考指导 > 行测 >

2019乡镇公务员考试内容-行测技巧:巧用中国剩余定理解决余数问题

来源:中公乡镇公务员考试网     2019-08-27 11:15:04

编辑推荐乡镇学习交流群:779500312

编辑推荐乡镇公务员微信公众号:offcnxz

编辑推荐全国乡镇公务员考试课程


【导语】2019年乡镇公务员考试已经陆续开始,很多学员对于乡镇公务员考试内容-行测的备考无从下手,中公乡镇公务员考试网特意为大家提供行测考试内容备考之行测技巧备考知识,请广大考生关注乡镇公务员考试网,及时查看乡镇公务员备考资料,包括备考指导考试题库等信息。中公乡镇公务员考试网致力于为您提供更优质的信息。

近年来行测数量关系题目中出现很多余数相关问题,多数同学仅仅掌握了基本的同余特性解决余数问题的基本方法,但是对于一些特殊的题型不会应对,我们可以采用一种新的方法——中国剩余定理来解决实际问题,明确题目形式,掌握基本解题方法,利用初等数论解同余式或许会给我们带来一些意想不到的效果。中公乡镇公务员考试网在此进行深入讲解和分析。

一、基本形式:

一个数除以A余数为a,除以B余数为b,除以C余数为c,求符合条件的数。

二、常考题型:

1、和同加和(X=除数的公倍数+除数和余数的和)

【例】某歌舞团200多人在大厅列队排练,若排成7排则多2人,排成5排则多4人,排成6排则多3人,问该歌舞团共有多少人?

中公解析:题目中除数和余数虽然不同,但是除数和余数的和都为9,这个时候称之为和同,歌舞团人数为7、5、6的公倍数加上9,此时人数可以表示为210n+9,人数为200多人,则此时歌舞团人数=210+9=219。

2、余同加余(X=除数的公倍数+余数)

【例】某班进行排队,每排4个、5个、6个最后一排都余2个,问这个班最少有多少人?

中公解析:题目中除数4、5、6各不相同,但余数都为2,此时我们称之为余同,此时班级人数为除数的公倍数+2,班级人数可以表示为60n+2,则此时班级最少人数为60+2=62人。

3、差同减差(X=除数的公倍数-差)

【例】三位运动员跨台阶,台阶总数在 100-150 级之间,第一位运动员每次跨 3 级台阶,最后一步还剩 2 级台阶。第二位运动员每次跨 4 级台阶,最后一步还剩 3 级台阶。第三位运动员每次跨 5 级台阶,最后一步还剩 4 级台阶。问:这些台阶总共有多少级?

中公解析:题目中除数和余数的差均为1,此时我们称之为差同,此时台阶数为除数的公倍数-5,台阶数可以表示为60n-1,又已知台阶数处于100-150之间,所以,此时n=2,符合条件的数只能是60×2-1=119。

4、逐步满足法(从除数最大的开始满足)

【例】一个班学生分组做游戏,如果每组三人就多两人,每组五人就多三人,每组七人就多四人,问这个班最少有多少学生?

中公解析:题目可以看成,除以3余2,除以5余3,除以7余4。不同于任何一种上述题型,此时用的方法是“逐步满足法”,从除数最大的7开始,从“除7余4的数”中找出符合“除以5余3的数”,就是在7的基础上一直加4,直到所得的数除以5余3,不难发现满足“除以7余4”和“除以5余3”的最小的数为18,接下来只要在18上一直加7和5得最小公倍数35,直到满足“除以3余2”即可,人数可以表示为35n+18,当n=1时三个条件全部满足,则班级学生人数最少为53人。另外,考试中行测部分均为选择题,结合选项带入排除也不失为一种行之有效的方法。

数论问题中的余数问题看似困难,但是掌握基本的解题方法,根据已知条件把实际问题转变为基础的数论问题,判断属于哪一类题型,考场时间有限,一定要做到稳、准、狠、快。

相关推荐:2019乡镇公务员考试内容-行测技巧:快速解不定方程

更多考试信息请查看乡镇公务员考试网,了解乡镇公务员考试公告乡镇公务员报考指导乡镇公务员考试新闻

版权声明注:本站稿件未经许可不得转载,转载请保留出处及原文地址。

(责任编辑:cy47389)

免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除

———— 课程专区 ————

  • 乡镇公务员微信公众号

    微信公众号

  • 中公乡镇公务员考试网

    手机端浏览