各地招聘

当前位置:乡镇公务员 > 备考指导 > 行测 >

2019乡镇公务员考试内容-行测技巧:鸡兔变形记

来源:中公乡镇公务员考试网     2019-08-29 10:50:24

编辑推荐乡镇学习交流群:779500312

编辑推荐乡镇公务员微信公众号:offcnxz

编辑推荐全国乡镇公务员考试课程


【导语】2019年乡镇公务员考试已经陆续开始,很多学员对于乡镇公务员考试内容-行测的备考无从下手,中公乡镇公务员考试网特意为大家提供行测考试内容备考之行测技巧备考知识,请广大考生关注乡镇公务员考试网,及时查看乡镇公务员备考资料,包括备考指导考试题库等信息。中公乡镇公务员考试网致力于为您提供更优质的信息。

鸡兔同笼是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?在历年公务员考试当中,鸡兔同笼问题也多次出现,作为一道有趣而且经常出现在考试中的题型,那就跟中公教育专家一起来学习吧!

(一)鸡兔同笼起源篇

解题技巧:几何示意图加行程基本公式。

例1、鸡和兔子同时养在一个笼子里,数了数,它们共有个35头,94只脚.问:养的鸡和兔各有多少只?

【中公解析】:

方法一:假设35只都是兔子,那么就有35×4=140(只)脚,比94只脚多了140-94=46(只).每只鸡比兔子少4-2=2(只)脚,那么共有鸡46÷2=23(只)

方法二:还可以假设35只都是鸡,那么共有脚2×35=70(只),比94只脚少了94-70=24(只)脚,每只鸡比兔子少4-2=2(只)脚,那么共有兔24÷2=12(只)。

结论:

解鸡兔同笼问题的基本关系式是:

如果假设全是兔,那么则有:

鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)

兔数=鸡兔总数-鸡数

如果假设全是鸡,那么就有:

兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)

鸡数=鸡兔总数-兔数

(二)鸡兔变形记

解题技巧:识别题干中的鸡和兔,利用假设法求解。

题型特征:已知两个主体的指标数和指标总部,求主体数量。

例2、某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。小红最终得44分,做对的题比做错的题多______道。

【中公解析】:

假设10道题目都作对,那么得分为10×6=60分,比44分多60-44=16分,答对一道题比答错多6+2=8分,一共答错16÷8=2道。答对为10-2=8道,答对比答错多8-2=6道。

例3、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?。

【中公解析】:

观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数。我们假设三种动物都是6条腿,则总腿数为6×18=108(条),所差118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的。所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只)。

鸡兔同笼问题,不管“鸡”和“兔”如何变形,只要抓住题型特征,利用假设法,就可以很快解决这一类题目。

相关推荐:2019乡镇公务员考试内容-行测技巧:工程问题如何用特殊值求解

更多考试信息请查看乡镇公务员考试网,了解乡镇公务员考试公告乡镇公务员报考指导乡镇公务员考试新闻

版权声明注:本站稿件未经许可不得转载,转载请保留出处及原文地址。

(责任编辑:cy47389)

免责声明:本站所提供试题均来源于网友提供或网络搜集,由本站编辑整理,仅供个人研究、交流学习使用,不涉及商业盈利目的。如涉及版权问题,请联系本站管理员予以更改或删除

———— 课程专区 ————

  • 乡镇公务员微信公众号

    微信公众号

  • 中公乡镇公务员考试网

    手机端浏览